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Abstract

For g ∈ N, let G = Sp(2g,Z) be the integral symplectic group and S(g)
be the set of all positive integers which can occur as the order of an element
in G. In this paper, we show that S(g) is a bounded subset of R for all
positive integers g. We also study the growth of the functions f(g) = |S(g)|,
and h(g) = max{m ∈ N | m ∈ S(g)} and show that they have at least
exponential growth.

1. Introduction

Given a group G and a positive integer m ∈ N, it is natural to ask if
there exists k ∈ G such that o(k) = m, where o(k) denotes the order of the
element k. In this paper, we make some observations about the collection
of positive integers which can occur as orders of elements in G = Sp(2g,Z).
Before we proceed further we set up some notations and briefly mention the
questions studied in this paper.

Let G = Sp(2g,Z) be the group of all 2g × 2g matrices with integral
entries satisfying

A>JA = J

where A> is the transpose of the matrix A and J =

�
0g Ig
−Ig 0g

�
.

Throughout we write m = pα1
1 . . . pαk

k , where pi is a prime and αi > 0
for all i ∈ {1, 2, . . . , k}. We also assume that the primes pi are such that
pi < pi+1 for 1 ≤ i < k. We write π(x) for the number of primes less than or
equal to x. We let ϕ denote the Euler’s phi function. It is a well known fact
that the function ϕ is multiplicative, i.e., ϕ(mn) = ϕ(m)ϕ(n) if m,n are
relatively prime and satisfies ϕ(pα) = pα(1− 1

p) for all primes p and positive

integer α ∈ N. Let

S(g) = {m ∈ N | ∃A 6= 1 ∈ G with o(A) = m}.
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In this paper we show that S(g) is a bounded subset of R for all positive
integers g. The bound depends on g. Once we know that S(g) is a bounded
set, it makes sense to consider the functions f(g) = |S(g)|, where |S(g)| is
the cardinality of S(g) and h(g) = max{m | m ∈ S(g)}, i.e., h(g) is the
maximal possible (finite) order of an element in G = Sp(2g,Z). We show
that the functions f and h have at least exponential growth.

The above question derives its motivation from analogous questions from
the theory of mapping class groups of a surface of genus g (see section 2.1
in [4] for the definition). We know that given a closed oriented surface Sg
of genus g, there is a surjective homomorphism ψ : Mod(Sg) → Sp(2g,Z),
where Mod(Sg) is the mapping class group of Sg (see theorem 6.4 in [4]). It
is a well known fact that for f ∈ Mod(Sg) (f 6= 1) of finite order, we have

ψ(f) 6= 1. Let S̃(g) = {m ∈ N | ∃f 6= 1 ∈ Mod(Sg) with o(f) = m}. The set

S̃(g) is a finite set and it makes sense to consider the functions f̃(g) = |S̃(g)|
and h̃(g) = max{m ∈ N | m ∈ S̃(g)}. It is a well known fact that both these

functions f̃ and h̃ are bounded above by 4g + 2 (see corollary 7.6 in [4]).

2. Some results we need

In this section we mention a few results that we need in order to prove
the main results in this paper.

Proposition 2.1 (Bürgisser). Let m = pα1
1 . . . pαk

k , where the primes pi sat-
isfy pi < pi+1 for 1 ≤ i < k and where αi ≥ 1 for 1 ≤ i ≤ k. There exists a
matrix A ∈ Sp(2g,Z) of order m if and only if

a)
kX
i=2

ϕ(pαi
i ) ≤ 2g, if m ≡ 2(mod 4).

b)
kX
i=1

ϕ(pαi
i ) ≤ 2g, if m 6≡ 2(mod 4).

Proof. See corollary 2 in [1] for a proof. �

Proposition 2.2 (Dusart). Let p1, p2, . . . , pn be the first n primes. For
n ≥ 9, we have

p1 + p2 + · · ·+ pn <
1

2
npn.

Proof. See theorem 1.14 in [2] for a proof. �
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Proposition 2.3 (Dusart). For x > 1, π(x) ≤ x
log x

�
1 + 1.2762

log x

�
. For

x ≥ 599, π(x) ≥ x
log x

�
1 + 1

log x

�
.

Proof. See theorem 6.9 in [3] for a proof. �

Proposition 2.4 (Dusart). For x ≥ 2973,

Y
p≤x

�
1− 1

p

�
>

e−γ

log x

�
1− 0.2

(log x)2

�
.

where γ is the Euler’s constant.

Proof. See theorem 6.12 in [3] for a proof. �

Proposition 2.5 (Rosser). For x ≥ 55, we have π(x) > x
log x+2 .

Proof. See theorem 29 in [5] for a proof. �

3. Main Results

In this section we prove the main results of this paper. To be more pre-
cise, we prove the following.

a) S(g) is a bounded subset of R.
b) f(g) = |S(g)| has at least exponential growth.
c) h(g) = max{m | m ∈ S(g)} has at least exponential growth.

3.0.1. Boundedness of S(g). In this subsection we show that S(g) is a bounded
subset of R.

Let m = pα1
1 . . . pαk

k ∈ S(g). Suppose pi > 2g+1 for some i ∈ {1, 2, . . . , k}.
This would imply that ϕ(pαi

i ) = pαi−1
i (pi−1) > 2g, which contradicts propo-

sition 2.1. It follows that all primes in the factorization of m should be
≤ 2g + 1 and hence k ≤ g + 1.

Theorem 3.1. For g ∈ N, S(g) is a bounded subset of R.

Proof. For g ∈ N, fix k = π(2g + 1) and P = {p1, p2, . . . , pk} be the set of
first k primes arranged in increasing order. The prime factorization of any
m ∈ S(g) involves primes only from the set P . The total number of non-
empty subsets of P is 2k − 1. Let us denote the collection of these subsets
of P as {P1, P2, . . . P2k−1}. For 1 ≤ a ≤ 2k − 1, let Pa denote the subset
{q1, q2, . . . , qn} of P , where n = n(Pa) is the number of primes in the subset
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Pa. For a fixed a (and hence fixed Pa), define

ma = ma(α1, . . . , αn) = qα1
1 qα2

2 . . . qαn
n ,

ra = ra(α1, . . . , αn) =
nX
i=1

qαi
i

�
1− 1

qi

�
,

where αi > 0. The key idea of the proof is to maximize the function ma

considered as a function of the real variables (α1, α2, . . . αn) with respect to
the inequality constraint ra ≤ 2g + 1. We let Ma denote this maximum.
Using the Lagrange multiplier method we see that the function ma attains
the maximum Ma precisely when qαi

i (1− 1
qi

) = q
αj

j (1− 1
qj

) for all 1 ≤ i, j ≤ n.

Under the above condition, the constraint ra ≤ 2g+ 1 gives us qαi
i (1− 1

qi
) ≤

2g+1
n , for any 1 ≤ i ≤ n. Now

ma(α1, α2, . . . αn) =
qα1
1

�
1− 1

q1

�
qα2
2

�
1− 1

q2

�
. . . qαn

n

�
1− 1

qn

�
nY
i=1

�
1− 1

qi

� .

From this it follows that for 1 ≤ a ≤ 2k − 1,

Ma =

�
qα1
1

�
1− 1

q1

��n

nY
i=1

�
1− 1

qi

� ≤

�
2g+1
n

�n

kY
i=1

�
1− 1

pi

� .

Therefore, for m ∈ S(g), we have

m ≤ max
1≤a≤2k−1

Ma

≤
max

1≤a≤2k−1

�
2g+1
n

�n

kY
i=1

�
1− 1

pi

�

≤ e
2g+1

e

kY
i=1

�
1− 1

pi

�
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In the above computation, we have used the fact that for x > 0,

�
2g+1
x

�x

attains the maximum when x = (2g + 1)/e.

Observing that
kY
i=1

�
1− 1

pi

�
≥ 1

2

2

3

�
4

5

�π(2g+1)−2
, we have

m ≤ 3(5/4)π(2g+1)−2e
2g+1

e ≤ 3e

�
2g+1

e
+g−1

�
≤ 3e3g.

�

Corollary 3.2. For g ∈ N, f(g) ≤ h(g) ≤ 3e3g.

Proof. For m ∈ S(g), we have m ≤ 3e3g. The result follows. �

Remark 3.3. Upper bound for S(g) for g ≥ 1486: The bound obtained in
theorem 3.1 is an absolute upper bound for S(g). For g ≥ 1486 , we can
improve the above upper bound as follows: Using proposition 2.4, we get

kY
i=1

�
1− 1

pi

�
>

1

2

e−γ

log(2g + 1)
.

Therefore it follows that for m ∈ S(g), we have

m ≤ e
2g+1

e

kY
i=1

�
1− 1

pi

� ≤ 2eγ log(2g + 1)e
2g+1

e .

3.0.2. Growth of f(g) and h(g). In the previous section, we computed an
upper bound for the functions f(g) and h(g). In this section we show that
f(g) and h(g) have at least exponential growth.

Lemma 3.4. For x ≥ 23, we have
X
p≤x

p <
1

2
xπ(x)

where the sum is over all primes p ≤ x.

Proof. Let n be such that pn ≤ x < pn+1, where pn denotes the nth prime
number. It follows from proposition 2.2, that for x ≥ 23, we have

X
p≤x

p =
X
p≤pn

p <
1

2
npn ≤

1

2
π(x)x.

�

Before we proceed further, we set up some notation which we need in the
following results.

Let K(≥ e) ∈ N be such that for
√
K logK ≥ 23.
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Lemma 3.5. For g ≥ K, π(
√
g log g) <

3
√
g log g

log(g log g) .

Proof. For y ≥ e, we have π(y) < y
log y

�
1 + 3

2 log y

�
(see proposition 2.3).

Using this estimate we get,

π(
È
g log g) <

√
g log g

log(
√
g log g)

�
1 +

3

2 log(
√
g log g)

�

≤
√
g log g

log(
√
g log g)

�
1 +

3

2 log 23

�

<
3
√
g log g

log(g log g)
.

�

Lemma 3.6. Let x =
√
g log g and m = m(g) =

Y
p≤x

p. Then for g ≥ K, we

have m ∈ S(g).

Proof. By proposition 2.1, it is enough to show that β =
X

2 6=p≤x
(p− 1) ≤ 2g.

Using lemma 3.4 and lemma 3.5 , we have

β <
X
p≤x

p <
1

2
(
È
g log g)π(

È
g log g)

<
3

2

g log g

log(g log g)
<

3

2
g.

�

For g ≥ K, let A(g) = {p ∈ N | p ≤
√
g log g} and m = m(g) be as in

lemma 3.6. If d is any divisor of m, then it is easy to see that d ∈ S(g).
Also it is clear that the divisors d of m are in bijection with the number of
subsets of A(g). Since any divisor d of m is an element in S(g) and the num-
ber of divisors correspond bijectively with subsets of A(g), it follows that

f(g) = |S(g)| ≥ 2π(
√
g log g) (since number of subsets of A(g) = 2π(

√
g log g)).

We will now show that |S(g)| > e
1
4

È
g

log g from which it follows that the
function f(g) = |S(g)| has at least exponential growth.
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Theorem 3.7. Let L ∈ N such that
√
L logL ≥ 55. Then f(g) = |S(g)| >

e
1
4

È
g

log g for all g ≥ L.

Proof. From proposition 2.5, we have for all g ≥ L,

√
g log g

log(g log g)
< π(

È
g log g).

From this it follows that for all g ≥ L, we have

f(g) ≥ 2π(
√
g log g) > 2

√
g log g

log(g log g) > 2
1
2

È
g

log g > e
1
4

È
g

log g .

�

Corollary 3.8. Let L ∈ N be as in the above theorem. Then h(g) > e
1
4

È
g

log g

for all g ≥ L.

Proof. Since h(g) ≥ f(g), the result follows. �

Remark 3.9. For g log g ≥ (599)2, we can improve the above lower bound

e
1
4

È
g

log g to e

È
g

4 log g by using proposition 2.3.
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